От редакцииВ начале года мы обратили внимание на статью шнобелевских лауреатов 2012 г. - Ганса Майера и Руслана Кречетникова из Университета Калифорнии в Санта-Барбаре, - исследовавших прогулки с кофе. Написали письмо с просьбой о репринте в адрес Руслана Кречетникова на русском языке, и, не дождавшись ответа, публикуем результат их исследования. 4-May-15
H.C. Mayer and R. Krechetnikov. WALKING WITH COFFEE: WHY DOES IT SPILL?AbstractIn our busy lives, almost all of us have to walk with a cup of coffee. While often we spill the drink, this familiar phenomenon has never been explored systematically. Here we report on the results of an experimental study of the conditions under which coffee spills for various walking speeds and initial liquid levels in the cup. These observations are analyzed from the dynamical systems and fluid mechanics viewpoints as well as with the help of a model developed here. Particularities of the common cup sizes, the coffee properties, and the biomechanics ofwalking proved to be responsible for the spilling phenomenon. The studied problem represents an example of the interplay between the complex motion of a cup, due to the biomechanics of a walking individual, and the low-viscosity-liquid dynamics in it. 1. IntroductionAbramson, a classic of sloshing dynamics, started his seminal 1967 NASA report with the remark that
While many of us may have thought about this phenomenon, the question as to why we spill coffee has never been formally studied to the authors’ knowledge. As we have allwalkedwith a cup of coffee or other liquid-filled containers, this is certainly a familiar problem. The presented study of when and why coffee spills shows that it is a confluence of biomechanics, liquid sloshing engineering, and dynamical systems. While each of these subjects is well developed, the fact that they have different focuses of study does not allow one to penetrate into the posed question immediately. Namely, on one hand, a large body of the biomechanics and medical literature is dedicated to the study of human walking, including quantifying the motion of the ✓ body center of mass; ✓ energy expenditure, and efficiency of process; ✓ gait patterns related to gender, age, health, etc.; ✓ motion of appendages in natural positions; ✓ regularity of walking over long periods of time. On the other hand, liquid sloshing studies are concerned ✓ with large liquid-filled structures such as rocket fuel tanks, which are subject to considerable accelerations and vibrations; ✓ forces and torques due to liquids experiencing various sloshing motions; ✓ suppression of sloshing necessary for vehicle control. However, in the walking with coffee problem the motions of the human body, while seemingly regular, are quite complex and are coupled to a coffee cup and liquid therein, which makes it difficult to unravel the precise reasons behind coffee spilling.
II. Our studiesTo address the challenge we set up experiments in which a human subject was asked to walk naturally with different speeds along a straight line path, with acceleration ẍ chosen naturally by the subject. Two different regimes of walking were explored: when the subject was focused - trying not to spill and unfocused - not concerned with spilling. The subject was recorded at 100 fps walking at different average speeds in the range 〈ẋ〉 = 0.5 - 2.5 m/s. The motion was analyzed in the xy plane only, which is justified below, using an image analysis program written in MATLAB, while the instant of a spill was determined with a light-emitting diode signal triggered by a sensor monitoring the coffee level in the cup. A. Cup excitation vs hydrodynamics in the cupAs known from biomechanics, the key goals during walking are to move the body toward a desired location and at a desired speed, while using the least amount of total energy to achieve the first goal. This means that the body tends to move in as straight a line as possible and with very little up and down movements. The latter is due to the tendency at the freely chosen step rate to consume the least oxygen at any given speed. As follows from the trajectory measurements, an initial acceleration region is followed by a region of an almost constant walking speed, i.e., the maximum acceleration ẍmax is realized early on. Measurements, shown in Fig. 4(a), demonstrate that ẍmax chosen by a human subject increases with average speed 〈ẋ〉 and is lower in the focused regime for higher walking speeds. Since the maximum acceleration ẍmax is a good measure of the initial deflection of the liquid interface, we decided to choose it for further characterization of the data and scale it with respect to the acceleration ẍα, defined by the spill angle α for a given coffee level.
Analyses of all cup excitations-back-and-forth in Fig. 3(a), vertical in Fig. 3(b), and pitching-show the presence of oscillatory-type motions on the order of 1 cm in magnitude superimposed on the average trajectory of the human subject.
Vertical excitations are characterized by the maximum of the y velocity synchronized with steps. As for pitching θ motion, it is essentially a combination of arm swing and flexibility of the wrist and is on the order of 2°. Analysis of the dependence of excitation on walking speed in Fig. 4(c) indicates that the standard deviation of the x velocity about the average decreases with increasing walking speed. This is counterintuitive, i.e., the faster one walks the smoother the motion of the cup in the x direction, as opposed to themagnitude of the y excitation in Fig. 4(d), which increases withwalking speed. Fig. 4(b) shows that the coffee cup is excited at a frequency fcup nearly identical to the step frequency fstep, which increases with walking speed and agrees with previous measurements for a variety of individuals. Most importantly, the excitation frequency is in the range of fcup = 1 - 2.5 Hz.
Now let us compare the cup excitations to natural frequencies of liquid oscillations in the cup. The natural frequencies of oscillations of a frictionless, vorticity-free, and incompressible liquid in an upright cylindrical container with a free liquid surface arewell known from liquid sloshing engineering:
where m = 0, 1, 2, ... and n = 1, 2, ... In this equation H is the liquid height, ρ its density, R the cup radius, σ the surface tension, and g the gravity acceleration. The values ∈mn are the roots of the first derivative (∈) = 0 of the mth-order Bessel function of the first kind; numerical values are ∈11 = 1.841, ∈12 = 5.331, ∈31 = 8.536, ..., ∈1 n + 1 = ∈1 n + π. The shape of an antisymmetric mode of the free surface wave is proportional to J1(∈mnr/R) and for n = 1 is shown in plate 191 of van Dyke’s Album of Fluid Motion. For a typical common size of a coffee cup, R ≈ 3.5 cm and H ≈ 10 cm, which is studied here, the surface tension σ effect is negligible and the angular frequency is ω11 = ωnat ∼ 23 rad/s, so that the corresponding frequency is ν11 = νnat ~ 3.65 Hz and the period of liquid oscillations is Tnat ∼ 0.27 s. In general, coffee cups vary in size roughly from (R, H) = (2.5, 5.7) to (6.7, 8.9) cm for espresso to cappuccino type mugs, which gives natural frequencies in the range 2.6 - 4.3 Hz. Therefore, once compared to the range of excitation frequencies, fcup = 1 - 2.5 Hz, it is the lowest-frequency antisymmetric mode ωnat that tends to get excited during walking, which exhibits the largest liquidmass participating in the back-and-forth sloshing and thus leads to the largest effect on the dynamics of the system. From a dynamical systems point of view, the considered system is parametrically excited by the following motions: (i) Back-and-forth: this excites the first antisymmetric sloshing mode. (ii) Lateral: as known from the measurements of the motion of the body center of gravity during walking, the lateral and forward oscillations are of the same order of amplitude of 20 mm, although the frequency of the lateral motion is almost half that of the forward motion, i.e., ∼ 1.25 Hz. Therefore, its effect is less important as it is further away from the natural frequency of liquid oscillations, νnat ~ 3.65 Hz. (iii) Vertical: Faraday was one of the first to observe the phenomenon of parametric resonance, noting that surface waves in a fluid-filled cylinder under vertical excitation exhibited twice the period of the excitation - the so-called one-half subharmonic response. Since the frequency of vertical excitation in our case is lower than the natural one, one does not expect the Faraday instability to be observed. (iv) Pitching: Since the pitching frequency is the same as that of back-and-forth motion, it contributes to the excitation of the natural antisymmetric mode. These basic excitation effects alone, however, do not explain the particularities of coffee spilling. First, let us look at the dependence of the number of steps N before the coffee is spilled on the coffee level α, the walking speed characterized by the maximum acceleration ẍmax as per Fig. 4(a), and the focused vs unfocused regimes in Fig. 5.
First, it was determined that most often coffee spills in the range of 4 - 5 m of walking distance. Clearly, N decreases with increasing ẍmax/ẍα and thuswalking speed, which is consonant with one’s intuition. If ẍmax/ẍα > 1, a very short spill time is observed as the coffee reaches the critical spill angle α due to a large early acceleration that provides significant initial deflection of the interface; see Fig. 2(c). Also, high coffee levels exhibit fewer N before spilling occurs. Most interestingly, focusing tends to increase N before spilling, which, in part, is due to lower maximum acceleration, which sets a lower initial amplitude for liquid sloshing, and a lower noise level in the excitation for a given walking speed compared to the unfocused regime as explained below. While walking appears to be a periodic, regular process, closer examination reveals fluctuations in the gait pattern, even under steady conditions. Together with other natural factors - uneven floors, distractions during walking, etc. - this explains why the cup motion during the constant walking speed regime is composed of noise and smooth oscillations of constant amplitude: the smooth signal has a frequency commensurate with that of walking, whereas it is apparent that the noise is a complicated combination of higher-frequency harmonics. Comparison of the focused and unfocused regimes in Fig. 5 suggests that higher levels of noise in the latter regime substantially intensify the spilling. Mechanical modelTo support the above conclusions and explain the experimental findings presented here, we developed a simple mechanical model based on the fully nonlinear spherical pendulum equations with forced oscillations. As a spherical pendulum have characteristics similar to sloshing, several investigators have used this analogy to predict and understand the observed sloshing behavior in other systems. Since we are mainly interested in the near-planar pendulum motions, it is convenient to choose a coordinate system which has singularities at x = z = 0, y = ±1 and is defined in terms of two angles γ and β:
Considering a spherical pendulum of length l and mass m, which is forced horizontally in the x direction as x0(t), the nondimensional kinetic and potential energies are given by
where we took into account that the horizontal displacements of the pendulum relative to the pivot are lx and ly, respectively. Given the expressions of the kinetic and potential energies, we can form the Lagrangian L = T − V and, expressing x and z in terms of y and γ, derive the Euler - Lagrange equations for γ and y: The length l of an equivalent spherical pendulum is found by equating the natural frequency of the pendulum to that of the first antisymmetric mode ω11, for liquid sloshing. As the idea was to develop as simple a model as possible, the forcing in the x direction includes the walking frequency ωcup with amplitude A similar to that observed in experiments and a number of higher-frequency harmonics:
with randomly selected frequencies ωn over a sufficiently large interval, which includes ωcup, as well as random phase shifts φn and amplitudes an, so that their total amplitude in the Euclidean norm is a fraction of A to reflect the presence of the noise. The number of harmonics n* is taken sufficiently large so that the results in Fig. 7 become insensitive to further increases in n*.
The spherical pendulum modelwas integrated from random initial conditions and with randomly selected forcing (4). A considerable number of runs was performed to collect statistical data of spilling events, which occur when the deflection of the pendulum exceeds a critical value corresponding to the spill angle α. Qualitative agreement exists between the outcome of these simulations and the presented experimental observations, namely, that with increasing ẍmax/ẍα the number of steps to spill, normalized by the fraction of runs P that result in a spill, N/P, decreases significantly up to ẍmax/ẍα = 1, at which point there is a nearly instantaneous spill. Furthermore, N/P decreases with an increase in the coffee level for any value of ẍmax/ẍα. All data points in Fig. 7(a), shown in gray, correspond to the low value of the noise amplitude used, |a|/A = 0.1, which is analogous to the focused walking characterized by lower noise levels in Fig. 7(b). The effect of increasing the amplitude |a| of the noise in the forcing signal is to decrease N/P as shown in Fig. 7(b). This is qualitatively similar in nature to the differences observed in experiments between focused and unfocused walking. Next, since walking starts from rest and is usually nonuniform, the frequency of step changes so that one can expect resonance to occur much earlier than when excitation approaches the natural frequency. This is known as the chirped frequency phenomenon used to trap particles with electromagnetic waves - resonance sets in when the ramped forcing frequency is midway between its initial value and the natural frequency for resonance in the unforced problem. Therefore, since walking is usually nonuniform, the step frequency varies initially from zero to some constant value and over the course of walking, one can expect that resonance will occur even before the step frequency reaches the value of the natural frequency. If this is true, then perhaps the liquid in the cup experiences growth in sloshing at angular frequencies ω lower than the natural frequency ωnat and could lead to spilling. This behavior is exemplified in Fig. 7(c), in which a simple planar pendulum is subject to a ramped forcing frequency ω starting from zero with an arbitrary deflection at t = 0. For the particular case shown in Fig. 7(c), x0 = 5 and the ramp rate ∈ = 0.003 18 results in a frequency ratio ω/ωnat = 0.6 after 30 cycles. At some point in time, it is observed that the pendulum experiences an increase in the x deflection corresponding to the frequency reaching the jump frequency. If the maximum experienced amplitude is above a critical deflection amplitude, then spilling occurs. This should be contrasted to a simple planar pendulum with a fixed forced frequency corresponding to a fixed frequency ratio 0.6, in which case no substantial increase in the x deflection is achieved. The inset of Fig. 7(c) corresponds to the ramp rate ∈ = 0.0318, but ω/ωnat = 0.6 is reached after three cycles to model the initial stage of walking from rest. It is apparent that the deflection x increases at early times and can reach a critical amplitude versus the motion of an unforced pendulum with the same initial deflection. A closer look at the liquid motion in the cup suggests that not only back-and-forth but also swirling liquid motions can be excited by walking at typical speeds. While swirl does not contribute much to coffee spilling, it is still an interesting question as to why rotational motion is generated. In addition to the obvious potential reason - movement of the hand in the xz plane - many different experimental studies concerned with back-and-forth sloshing have revealed an interesting type of liquid instability occurring very close to the lowest liquid resonant frequency: the nodal diameter of the antisymmetric wave begins to rotate at an unsteady rate. The essential features of this complex liquid motion can be described qualitatively as an apparent rotation of the liquid about the vertical axis of symmetry of the tank, superimposed on the normal sloshing motion. There is also a somewhat larger frequency range just above the natural frequency in which the nodal diameter can rotate stably at a constant rate. As illustrated in Fig. 7(d), the spherical pendulum does demonstrate, depending on the ratio of the excitation to the natural frequency, instability of planar motion and thus generation of rotational motion. III. DiscussionAs follows from the presented study, we spill coffee either by accelerating too much for a given coffee level or through more complicated dynamical phenomena due to the particular range of sizes of common coffee cups, which is dictated by the convenience of carrying them and the normal consumption of coffee by humans. Namely, first the maximum acceleration occurring early on in the walking sets an initial sloshing amplitude. This interface deflection is then amplified by the back-and-forth and pitching excitations. Vertical excitation does not lead to resonance as it is a subharmonic excitation. The noise component of motion contains higher-frequency harmonics, which make the antisymmetric mode unstable, thus generating a swirl. Time to spill generally depends on whether walking is in a focused or unfocused regime and increases with decreasing maximum acceleration. The difference between the focused and unfocused regimes suggests that walking with coffee is a control problem, since the number of steps to spill is different in these two regimes. As the data analysis shows, this is due to the difference in the level of a noise excitation, while the amplitude of a regular excitation does not change significantly, which is conceivably due to the natural constraints of the biomechanics of walking. However, whether it is a feedback control system - i.e., when a human being identifies the resonant sloshing frequency and then performs a targeted suppression of the resonant mode - or an open loop control system - i.e., when a human being simply becomes more careful about carrying a cup regardless of the natural frequency of the fluid in it - may depend on an individual.Understanding this is beyond the scope of ourwork, as the collected data are too limited to provide conclusive results about such a specific question as to whether it is only the resonant excitation which is suppressed in the focused regime. Another relevant question to study is the influence of the degree of danger of the fluid in a cup, e.g., hot vs cold. Our simple theoretical model captures the observed phenomena qualitatively - quantitative differences are in part due to differences in the widths of the resonance curves between spherical pendulum and liquid oscillations in a cylindrical container; in the latter case, the response curve is substantially wider, thus explaining the stronger response of the liquid to excitations at frequencies far from resonance. The fact that the studied system demonstrates that in the focused regime, characterized by lower levels of noise, the coffee spill occurs later compared to the unfocused regime makes the phenomenon analogous to that of stochastic resonance, where the periodic forcing is amplified by the presence of noise above a certain threshold. While the experimental data discussed here are representative of human walking with a cup of coffee, as the involved parameters - excitation amplitudes and frequencies - do not have much variation among individuals, future comparative studies may provide further insights into the variability of the discussed phenomena. For example, gender differences - gait velocity and step length are lower and step frequency is higher for women than for men - may lead to differences in coffee spilling. However, some age effects, such as the changes of the basic gait parameters most frequently seen with advancing age, are a reduction of gait speed and step length, but just small changes of the step frequency are not expected to lead to variations in coffee spilling. Finally, lessons learned from sloshing engineering may suggest strategies to control spilling, e.g., via using (a) a flexible container to act as a sloshing absorber in suppressing liquid oscillations, or (b) a series of concentric rings arranged around the inner wall of a container. Namely, ring baffles damp the large sloshing mass flow associated with the main resonant frequency of the liquid in the container into several smaller sloshing masses - high-speed turbulent flow around baffles - having considerably higher first-mode resonant frequencies. The baffles can be nonperforated or perforated. Perforation provides better damping and reduces themass of baffles. However, despite the variety of spill control options, the simplicity and convenience of a common coffee cup will likely continue to outweigh the side effect of coffee drinking studied here - occasional spilling. IV. AcknowlegmentsThis work was partially supported by DARPA Young Faculty Award Grant No. N66001-11-1-4130. The authors would like to thank UCSB Mechanical Engineering undergraduate Zheqing Liu for the assistance with experiments. References
Приглашение к обсуждению прочитанного |
Из wikipedia.orgMATLAB, пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Лагранжиан, функция динамической системы, названа в честь Жозефа Луи Лагранжа, является функцией обобщённых координат φi(s) и описывает эволюцию системы. Уравнения Эйлера - Лагранжа являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. Herbert Goldstein (1922 - 2005) was an American physicist and the author of the standard graduate textbook Classical Mechanics. Kurt Wiesenfeld is an American physicist working primarily on non-linear dynamics. Allegra, Е. Лубяницкий. Владимир Высоцкий о наукеХотя никто и нигде не писал, любил ли Владимир Высоцкий пить чай, Чайный Клуб всегда с обожанием относился к его творчеству. В далекие 60-е годы прошлого века человек совершил рывок в космос. И тогда же, в какой-то мере под влиянием фильма 9 дней одного года, люди начали интересоваться ядерной физикой, настолько привлекательным оказался персонаж А. Баталова. Видимо, пришло время восстановить справедливость. Мы представляем известные нам песни Высоцкого о науке, и предлагаем всем знатокам его творчества присоединиться к поиску других песен Высоцкого о науке. Ваши изыскания будут опубликованы. Комментарии к роликам сделаны по книге. Владимир Высоцкий. Песня студентов-археологовЭту песню... я тоже предполагал для фильма, но там уже кто-то опередил - там была другая студенческая песня, вроде Через тумба-тумба раз... и так далее. А у меня-то была песня специфическая, потому что мне сказали, что там едут студенты-археологи... Из выступления в АН СССР, 1967.
Владимир Высоцкий. Письмо в редакцию телевизионной передачи Очевидное - невероятное из сумасшедшего дома - с Канатчиковой Дачи1977
В этом ролике не хватает трех последних куплетов:
Владимир Высоцкий. Каждому хочется малость погреться1966
Владимир Высоцкий. Песня космических негодяев1966
Владимир Высоцкий. Марш студентов-физиковПесня написана для пьесы М. Сагаловича Тихие физики. Пьеса не ставилась 1964
Владимир Высоцкий. Никакой ошибки1975
Владимир Высоцкий. Песенка о переселении душ1969
В первоначальном варианте между строфами 4 и 5 имелись строфы:
Владимир Высоцкий. Одна научная загадка, или Почему аборигены съели Кука1971 - 1979
Владимир Высоцкий. В далеком созвездии Тау Кита1966
Владимир Высоцкий. Товарищи ученые1972
В первоначальной редакции после строфы 7 располагалась строфа:
Накроем стол скатеркою - валяйте, ешьте пальцами!
Хотя вы и создаете синтетический белок - Но он такой невкусный, - мы же вас накормим яйцами, Дадим с собой картофелю - хоть сумку, хоть мешок. Далее - повтор строф 3, 8, 10, повтор строф 3, 9 и строфа: Для вас тот день покажется - и каторжный, и адовый:
Сырой картофель в грядках - у ученых не в чести, - Зато впервые сможете повкалывать наглядно вы - И пользу ощутимую народу принести. Песня заканчивалась повтором строфы 3. |