От редакцииВ начале года мы обратили внимание на статью шнобелевских лауреатов 2012 г. - Ганса Майера и Руслана Кречетникова из Университета Калифорнии в Санта-Барбаре, - исследовавших прогулки с кофе. Написали письмо с просьбой о репринте в адрес Руслана Кречетникова на русском языке, и, не дождавшись ответа, публикуем результат их исследования. 4-May-15
|
![]() |
(1) |
where m = 0, 1, 2, ... and n = 1, 2, ... In this equation H is the liquid height, ρ its density, R the cup radius, σ the surface tension, and g the gravity acceleration. The values ∈mn are the roots of the first derivative (∈) = 0 of the mth-order Bessel function of the first kind; numerical values are ∈11 = 1.841, ∈12 = 5.331, ∈31 = 8.536, ..., ∈1 n + 1 = ∈1 n + π. The shape of an antisymmetric mode of the free surface wave is proportional to J1(∈mnr/R) and for n = 1 is shown in plate 191 of van Dyke’s Album of Fluid Motion. For a typical common size of a coffee cup, R ≈ 3.5 cm and H ≈ 10 cm, which is studied here, the surface tension σ effect is negligible and the angular frequency is ω11 = ωnat ∼ 23 rad/s, so that the corresponding frequency is ν11 = νnat ~ 3.65 Hz and the period of liquid oscillations is Tnat ∼ 0.27 s. In general, coffee cups vary in size roughly from (R, H) = (2.5, 5.7) to (6.7, 8.9) cm for espresso to cappuccino type mugs, which gives natural frequencies in the range 2.6 - 4.3 Hz. Therefore, once compared to the range of excitation frequencies, fcup = 1 - 2.5 Hz, it is the lowest-frequency antisymmetric mode ωnat that tends to get excited during walking, which exhibits the largest liquidmass participating in the back-and-forth sloshing and thus leads to the largest effect on the dynamics of the system.
From a dynamical systems point of view, the considered system is parametrically excited by the following motions:
(i) Back-and-forth: this excites the first antisymmetric sloshing mode.
(ii) Lateral: as known from the measurements of the motion of the body center of gravity during walking, the lateral and forward oscillations are of the same order of amplitude of 20 mm, although the frequency of the lateral motion is almost half that of the forward motion, i.e., ∼ 1.25 Hz. Therefore, its effect is less important as it is further away from the natural frequency of liquid oscillations, νnat ~ 3.65 Hz.
(iii) Vertical: Faraday was one of the first to observe the phenomenon of parametric resonance, noting that surface waves in a fluid-filled cylinder under vertical excitation exhibited twice the period of the excitation - the so-called one-half subharmonic response. Since the frequency of vertical excitation in our case is lower than the natural one, one does not expect the Faraday instability to be observed.
(iv) Pitching: Since the pitching frequency is the same as that of back-and-forth motion, it contributes to the excitation of the natural antisymmetric mode.
These basic excitation effects alone, however, do not explain the particularities of coffee spilling. First, let us look at the dependence of the number of steps N before the coffee is spilled on the coffee level α, the walking speed characterized by the maximum acceleration ẍmax as per Fig. 4(a), and the focused vs unfocused regimes in Fig. 5.
Fig. 5. Experimental measurements of the number of steps N to spill coffee for different coffee levels α. (a) - (c) represent experimental measurements for different coffee levels α for both focused and unfocused regimes of walking, with summarized dependence on the coffee level α and focused vs unfocused regimes in (d); the error bars represent the uncertainty in determining the step time interval.
First, it was determined that most often coffee spills in the range of 4 - 5 m of walking distance. Clearly, N decreases with increasing ẍmax/ẍα and thuswalking speed, which is consonant with one’s intuition. If ẍmax/ẍα > 1, a very short spill time is observed as the coffee reaches the critical spill angle α due to a large early acceleration that provides significant initial deflection of the interface; see Fig. 2(c). Also, high coffee levels exhibit fewer N before spilling occurs. Most interestingly, focusing tends to increase N before spilling, which, in part, is due to lower maximum acceleration, which sets a lower initial amplitude for liquid sloshing, and a lower noise level in the excitation for a given walking speed compared to the unfocused regime as explained below.
While walking appears to be a periodic, regular process, closer examination reveals fluctuations in the gait pattern, even under steady conditions. Together with other natural factors - uneven floors, distractions during walking, etc. - this explains why the cup motion during the constant walking speed regime is composed of noise and smooth oscillations of constant amplitude: the smooth signal has a frequency commensurate with that of walking, whereas it is apparent that the noise is a complicated combination of higher-frequency harmonics. Comparison of the focused and unfocused regimes in Fig. 5 suggests that higher levels of noise in the latter regime substantially intensify the spilling.
To support the above conclusions and explain the experimental findings presented here, we developed a simple mechanical model based on the fully nonlinear spherical pendulum equations with forced oscillations. As a spherical pendulum have characteristics similar to sloshing, several investigators have used this analogy to predict and understand the observed sloshing behavior in other systems.
Since we are mainly interested in the near-planar pendulum motions, it is convenient to choose a coordinate system which has singularities at x = z = 0, y = ±1 and is defined in terms of two angles γ and β:
x = cosβ sinγ, y = sin β, z = − cosβ cos γ | (2) |
Fig. 6. Coordinate system for the spherical pendulum model: the pendulum is shown in the shaded plane and driven horizontally in the x direction with time-dependent forcing x0(t).
Considering a spherical pendulum of length l and mass m, which is forced horizontally in the x direction as x0(t), the nondimensional kinetic and potential energies are given by
![]() |
(3) |
where we took into account that the horizontal displacements of the pendulum relative to the pivot are lx and ly, respectively. Given the expressions of the kinetic and potential energies, we can form the Lagrangian L = T − V and, expressing x and z in terms of y and γ, derive the Euler - Lagrange equations for γ and y:
The length l of an equivalent spherical pendulum is found by equating the natural frequency of the pendulum to that of the first antisymmetric mode ω11, for liquid sloshing. As the idea was to develop as simple a model as possible, the forcing in the x direction includes the walking frequency ωcup with amplitude A similar to that observed in experiments and a number of higher-frequency harmonics:
![]() |
(4) |
with randomly selected frequencies ωn over a sufficiently large interval, which includes ωcup, as well as random phase shifts φn and amplitudes an, so that their total amplitude in the Euclidean norm is a fraction of A to reflect the presence of the noise. The number of harmonics n* is taken sufficiently large so that the results in Fig. 7 become insensitive to further increases in n*.
Fig. 7. Modeling the sloshing of a liquid in a cup as an equivalent spherical pendulum. (a) shows steps to spill N/P versus the normalized initial deflection of the interface ẍmax/ẍα for three different coffee levels (8° ≲ α ≲ 16°). Each data point shown in the figure corresponds to the average number of steps N of all model runs that yield a spill divided by the fraction of runs P that result in a spill. The error bars suggest the scatter in the number of steps for any given run for any fixed conditions due to the random nature of the noise in the forcing signal; solid lines through data sets are meant to guide the eye. (b) reflects the influence of the noise amplitude |a| on the number of steps to spill for α = 16.5°. Each data point here corresponds to an average as discussed in the previous figure, but the error bars have been left out for clarity. (c) shows the effect of a time-dependent forcing frequency on coffee spilling over short and longer times. (d) shows an example trajectory of a spherical pendulum projected onto the xz plane in the case &alpha = 16.5°. The starting position of the pendulum is denoted by an open circle and is based on the initial angle in the xy plane and a random z component. The critical spill radius in (d) is denoted by the red circle.
The spherical pendulum modelwas integrated from random initial conditions and with randomly selected forcing (4). A considerable number of runs was performed to collect statistical data of spilling events, which occur when the deflection of the pendulum exceeds a critical value corresponding to the spill angle α. Qualitative agreement exists between the outcome of these simulations and the presented experimental observations, namely, that with increasing ẍmax/ẍα the number of steps to spill, normalized by the fraction of runs P that result in a spill, N/P, decreases significantly up to ẍmax/ẍα = 1, at which point there is a nearly instantaneous spill. Furthermore, N/P decreases with an increase in the coffee level for any value of ẍmax/ẍα. All data points in Fig. 7(a), shown in gray, correspond to the low value of the noise amplitude used, |a|/A = 0.1, which is analogous to the focused walking characterized by lower noise levels in Fig. 7(b). The effect of increasing the amplitude |a| of the noise in the forcing signal is to decrease N/P as shown in Fig. 7(b). This is qualitatively similar in nature to the differences observed in experiments between focused and unfocused walking.
Next, since walking starts from rest and is usually nonuniform, the frequency of step changes so that one can expect resonance to occur much earlier than when excitation approaches the natural frequency. This is known as the chirped frequency phenomenon used to trap particles with electromagnetic waves - resonance sets in when the ramped forcing frequency is midway between its initial value and the natural frequency for resonance in the unforced problem. Therefore, since walking is usually nonuniform, the step frequency varies initially from zero to some constant value and over the course of walking, one can expect that resonance will occur even before the step frequency reaches the value of the natural frequency. If this is true, then perhaps the liquid in the cup experiences growth in sloshing at angular frequencies ω lower than the natural frequency ωnat and could lead to spilling. This behavior is exemplified in Fig. 7(c), in which a simple planar pendulum is subject to a ramped forcing frequency ω starting from zero with an arbitrary deflection at t = 0. For the particular case shown in Fig. 7(c), x0 = 5 and the ramp rate ∈ = 0.003 18 results in a frequency ratio ω/ωnat = 0.6 after 30 cycles. At some point in time, it is observed that the pendulum experiences an increase in the x deflection corresponding to the frequency reaching the jump frequency. If the maximum experienced amplitude is above a critical deflection amplitude, then spilling occurs. This should be contrasted to a simple planar pendulum with a fixed forced frequency corresponding to a fixed frequency ratio 0.6, in which case no substantial increase in the x deflection is achieved. The inset of Fig. 7(c) corresponds to the ramp rate ∈ = 0.0318, but ω/ωnat = 0.6 is reached after three cycles to model the initial stage of walking from rest. It is apparent that the deflection x increases at early times and can reach a critical amplitude versus the motion of an unforced pendulum with the same initial deflection.
A closer look at the liquid motion in the cup suggests that not only back-and-forth but also swirling liquid motions can be excited by walking at typical speeds. While swirl does not contribute much to coffee spilling, it is still an interesting question as to why rotational motion is generated. In addition to the obvious potential reason - movement of the hand in the xz plane - many different experimental studies concerned with back-and-forth sloshing have revealed an interesting type of liquid instability occurring very close to the lowest liquid resonant frequency: the nodal diameter of the antisymmetric wave begins to rotate at an unsteady rate. The essential features of this complex liquid motion can be described qualitatively as an apparent rotation of the liquid about the vertical axis of symmetry of the tank, superimposed on the normal sloshing motion. There is also a somewhat larger frequency range just above the natural frequency in which the nodal diameter can rotate stably at a constant rate. As illustrated in Fig. 7(d), the spherical pendulum does demonstrate, depending on the ratio of the excitation to the natural frequency, instability of planar motion and thus generation of rotational motion.
As follows from the presented study, we spill coffee either by accelerating too much for a given coffee level or through more complicated dynamical phenomena due to the particular range of sizes of common coffee cups, which is dictated by the convenience of carrying them and the normal consumption of coffee by humans. Namely, first the maximum acceleration occurring early on in the walking sets an initial sloshing amplitude. This interface deflection is then amplified by the back-and-forth and pitching excitations. Vertical excitation does not lead to resonance as it is a subharmonic excitation. The noise component of motion contains higher-frequency harmonics, which make the antisymmetric mode unstable, thus generating a swirl. Time to spill generally depends on whether walking is in a focused or unfocused regime and increases with decreasing maximum acceleration. The difference between the focused and unfocused regimes suggests that walking with coffee is a control problem, since the number of steps to spill is different in these two regimes. As the data analysis shows, this is due to the difference in the level of a noise excitation, while the amplitude of a regular excitation does not change significantly, which is conceivably due to the natural constraints of the biomechanics of walking. However, whether it is a feedback control system - i.e., when a human being identifies the resonant sloshing frequency and then performs a targeted suppression of the resonant mode - or an open loop control system - i.e., when a human being simply becomes more careful about carrying a cup regardless of the natural frequency of the fluid in it - may depend on an individual.Understanding this is beyond the scope of ourwork, as the collected data are too limited to provide conclusive results about such a specific question as to whether it is only the resonant excitation which is suppressed in the focused regime. Another relevant question to study is the influence of the degree of danger of the fluid in a cup, e.g., hot vs cold.
Our simple theoretical model captures the observed phenomena qualitatively - quantitative differences are in part due to differences in the widths of the resonance curves between spherical pendulum and liquid oscillations in a cylindrical container; in the latter case, the response curve is substantially wider, thus explaining the stronger response of the liquid to excitations at frequencies far from resonance. The fact that the studied system demonstrates that in the focused regime, characterized by lower levels of noise, the coffee spill occurs later compared to the unfocused regime makes the phenomenon analogous to that of stochastic resonance, where the periodic forcing is amplified by the presence of noise above a certain threshold.
While the experimental data discussed here are representative of human walking with a cup of coffee, as the involved parameters - excitation amplitudes and frequencies - do not have much variation among individuals, future comparative studies may provide further insights into the variability of the discussed phenomena. For example, gender differences - gait velocity and step length are lower and step frequency is higher for women than for men - may lead to differences in coffee spilling. However, some age effects, such as the changes of the basic gait parameters most frequently seen with advancing age, are a reduction of gait speed and step length, but just small changes of the step frequency are not expected to lead to variations in coffee spilling.
Finally, lessons learned from sloshing engineering may suggest strategies to control spilling, e.g., via using (a) a flexible container to act as a sloshing absorber in suppressing liquid oscillations, or (b) a series of concentric rings arranged around the inner wall of a container. Namely, ring baffles damp the large sloshing mass flow associated with the main resonant frequency of the liquid in the container into several smaller sloshing masses - high-speed turbulent flow around baffles - having considerably higher first-mode resonant frequencies. The baffles can be nonperforated or perforated. Perforation provides better damping and reduces themass of baffles. However, despite the variety of spill control options, the simplicity and convenience of a common coffee cup will likely continue to outweigh the side effect of coffee drinking studied here - occasional spilling.
This work was partially supported by DARPA Young Faculty Award Grant No. N66001-11-1-4130. The authors would like to thank UCSB Mechanical Engineering undergraduate Zheqing Liu for the assistance with experiments.
MATLAB, пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете.
Лагранжиан, функция динамической системы, названа в честь Жозефа Луи Лагранжа, является функцией обобщённых координат φi(s) и описывает эволюцию системы.
Уравнения Эйлера - Лагранжа являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов.
Herbert Goldstein (1922 - 2005) was an American physicist and the author of the standard graduate textbook Classical Mechanics.
Kurt Wiesenfeld is an American physicist working primarily on non-linear dynamics.
Хотя никто и нигде не писал, любил ли Владимир Высоцкий пить чай, Чайный Клуб всегда с обожанием относился к его творчеству.
В далекие 60-е годы прошлого века человек совершил рывок в космос. И тогда же, в какой-то мере под влиянием фильма 9 дней одного года, люди начали интересоваться ядерной физикой, настолько привлекательным оказался персонаж А. Баталова.
Видимо, пришло время восстановить справедливость. Мы представляем известные нам песни Высоцкого о науке, и предлагаем всем знатокам его творчества присоединиться к поиску других песен Высоцкого о науке.
Ваши изыскания будут опубликованы.
Комментарии к роликам сделаны по книге.
Эту песню... я тоже предполагал для фильма, но там уже кто-то опередил - там была другая студенческая песня, вроде Через тумба-тумба раз... и так далее. А у меня-то была песня специфическая, потому что мне сказали, что там едут студенты-археологи...
В этом ролике не хватает трех последних куплетов:
Больно бьют по нашим душам
Голоса за тыщи миль, -
Зря Америку не глушим,
Зря не давим Израиль:
Всей своей враждебной сутью
Подрывают и вредят -
Кормят, поят нас бермутью
Про таинственный квадрат!
Лектора из передачи!
Те, кто так или иначе
Говорят про неудачи
И нервируют народ!
Нас берите, обреченных, -
Треугольник вас, ученых,
Превратит в умалишенных,
Ну а нас - наоборот.
Пусть - безумная идея, -
Не решайте сгоряча.
Отвечайте нам скорее
Через доку главврача!
С уваженьем... Дата. Подпись.
Отвечайте нам - а то,
Если вы не отзоветесь,
Мы напишем... в Спортлото!
Песня написана для пьесы М. Сагаловича Тихие физики. Пьеса не ставилась
В первоначальном варианте между строфами 4 и 5 имелись строфы:
Какие ситуации! Простор воображенью:
Был гордым и почтенным - а родился дураком, -
А если мало радует такое положенье -
Скажи еще спасибо, что не сделался скотом!Уж лучше сразу - в дело, чем
Копить свои обиды, -
Ведь если будешь мелочен -
Докатишься до гниды.
Владимир Лаговской. Песня Высоцкого про Тау Кита оказалась пророческой
До братьев по разуму - рукой подать
На Тау Ките
Живут в красоте -
Живут, между прочим, по-разному -
товарищи наши по разуму,- уверял Владимир Высоцкий еще несколько десятилетий назад. Ныне его "пророчество" по сути подтвердилось. Представители международной группы астрономов из Великобритании, Чили, Австралии и США преподнесли своеобразный подарок к 75-летию барда: объявили, что вокруг звезды Тау Кита вращается планета, способная поддерживать жизнь.
Выражаясь научным языком, обнаруженная планета находится в так называемой зоне обитаемости. Как и наша Земля. А местное солнце - конкретно звезда Тау Кита - создает на этой планете достаточно комфортные условия. В том числе и для того, чтобы вода тут находилась в жидком виде. А не испарялась, как на Венере. Или не замерзала, как на Европе - спутнике Юпитера.
Тау Кита - одна из ближайших к нам звезд. Расположена в созвездии Кита. До нее всего 12 световых лет. Планета, подозреваемая в обитаемости, находится среди пяти имеющихся тут. Она четвертая от своего солнца. Имеет обозначение Тау Кита-е. Массивнее Земли в 4 раза. Год на этой е длится 168 земных дней.
Звезда Тау Кита подобна нашей - Солнцу. Обе принадлежат к одному звездному классу G. Но Тау Кита примерно на 55 процентов менее мощная. Однако тепла и света от нее вполне хватает четвертой планете, поскольку та расположена достаточно близко - находится, примерно, на месте нашей Венеры.
Сходство двух звезд давно волнует астрономов - особенно тех, кто ищет братьев по разуму. В 60-е годы прошлого века Тау Кита стала первой звездой, в сторону которой был направлен радиотелескоп в надежде уловить сигналы внеземной цивилизации. Такой выбор сделал легендарный Франк Дрейк, который первым начал поиски братьев по разуму, первым составил и отправил им послание. Об этом узнал Владимир Высоцкий, в связи с чем и отозвался соответствующей песней. И в этом смысле тоже стал первым.
Цивилизация таукитов старше человеческой
Открытию потенциально обитаемой планеты предшествовали около 6 тысяч наблюдений с наземных приборов и космических. Астрономы использовали оптические телескопы - ведь Тау Кита отлично видно даже невооруженным глазом. Применяли орбитальный телескоп НАСА Кеплер и так называемый Высокоточный искатель планет HARPS.
Кеплер ищет экзопланеты посредством так называемого транзитного метода. То есть следит, изменяется ли яркость звезды время от времени. А она изменяется, когда по диску звезды проходят планеты. По колебаниям яркости астрономы и определяют наличие планет.
Спектрограф HARPS установлен в Европейской южной обсерватории в Чили. Он ищет планеты, определяя аномалии в движении звезд. Если у звезды есть спутники, то, вращаясь вокруг, они влияют на нее - заставляют колебаться. Звезда меняет скорость. И эти колебания точно фиксирует искатель.
. . . . . . . . . . . . . . . . . . . . .Кстати
В своей инопланетной песне Владимир Семенович ошибся лишь в одном: он назвал Тау Кита созвездием, а это звезда в созвездии - в созвездии Кита. Ну, и погорячился, наверное, по поводу атмосферы, которой якобы нет. Но у пророков бывают мелкие неточности.
В первоначальной редакции после строфы 7 располагалась строфа:
Далее - повтор строф 3, 8, 10, повтор строф 3, 9 и строфа:
Песня заканчивалась повтором строфы 3.