От редакцииМы продолжаем публикации шнобелевских лауреатов. На этот раз Роберт Мэтьюз. Он получил шнобелевскую премию по физике в 1996 г. за изучение физической стороны законов Мерфи применительно к бутерброду, падающему, как известно, маслом вниз. Результат этого исследования, предлагаемый вниманию читателей, был опубликован в 1995 г. в Eur. J. Phys.
|
mδω = R – mgcosθ | (1) |
mδω2 = F – mgsinθ | (2) |
mω(k2 + δ2) = – mδωcosθ | (3) |
where k is the appropriate radius of gyration, such that for the rectangular lamina considered here. Multiplying (3) by 2ω and integrating from the initial conditions ω = 0 at θ = 0 leads to:
![]() |
(4) |
where we have used δ ≡ ηa, with η (0 < η < 1) being the overhang parameter. Equation (4) is the central equation of the tumbling toast problem, as it gives the rate of rotation of the toast once it has detached from the table from a specific state of overhang. Unless the toast can complete sufficient rotation on its descent to the floor to bring the buttered side facing upwards, the toast will land buttered side down. Thus if the toast begins its descent at an angle φ to the horizontal, then for it to land butter-side up again we must have
![]() |
(5) |
where ω0 is the free-fall δ rotation rate and τ the free-fall time for the height of the table h, so that
![]() |
(6) |
The frictional force acting on the lamina will prevent detachment until the lamina has rotated through at least an angle φ at which point slipping occurs. This minimum value of φ follows from the usual condition F = μR, where μ is the coefficient of static friction between the lamina and the table edge. From (l), (2) and (4) we find
![]() |
(7) |
To calculate the free-falling angular rotation rate ω0 we must deal with the post-slipping regime. At the instant of slipping, the centre of rotation of the lamina is a distance αη from the centre of gravity, and the rotational rate is given by (4). A point on the shorter, non-overhanging section of lamina at a distance α(η + ε), 0 < ε ≪ 1 from the CG will thus have a rotationally-induced horizontal component of velocity αεωsinφ away from the table. Slipping will bring this point vertically over the table edge, so that contact between table and toast is broken, the latter then tumbling about its CG at a rotational rate ω0 essentially unchanged from the original value. Although irregularity in the surface of the toast can prevent immediate post-slip detachment, experiments confirm that the value of ω0 can be taken as that induced by the initial overhang torque of mgαη0. Thus the free-falling toast rotates at a rate
![]() |
(8) |
where the value of the critical overhang parameter η0 and slip angle φ at which detachment takes place may be determined experimentally. To place a lower limit on the overhang needed to avoid a butter-side down final state, we insert (8) in (5), set and solve the resulting quadratic equation for η0
![]() |
(9) |
where and
.
For conventional tables and slices of toasts, we have h ~ 75 cm, 2α ~ 10 cm leading to R ~ 15, α ~ 0.06 and thus a lower limit on the critical overhang parameter of
η0 > 0.06 | (10) |
if the toast is to complete sufficient rotation to avoid a butter-side down final state.
An experimental determination of qo holds the key to establishing whether or not the fall of toast constitutes a manifestation of Murphy's Law. Tests were carried out using a lamina derived from a standard white loaf. The lamina was cut into a rectangle of 10 cm × 7.3 cm × 1.5 cm, and placed on a rigid flat and level platform of kitchen Contiboard, used to model the surface of a clean, uncovered table. Measurements of the value of the coefficient of static friction μ between the lamina and the platform were made by measuring the angle of the platform at which sliding just began; the tangent of this angle is then equal to μ. Test were carried out on both bread and toast, leading to
[μ]obs ~ 0.29; [μ]obs ~ 0.025 |
(11) |
Measurements of the value of the critical overhang parameter η0 were then made by placing the lamina over the edge of the Contiboard and determining the least amount of overhang of the 2α = 10 cm edge at which detachment and free-fall took place.
This was found to be
[η]obs ~ 0.02; [η]obs ~ 0.015 |
(12) |
Both bread and toast are thus relatively unstable to tumbling from overhanging positions. Crucially, neither can sustain overhangs anywhere near as large as the critical value given in (10). This implies that laminae with either composition do not have sufficient angular rotation to land butter-side up following free-fall from a table-top. In other words, the material properties of slices of toast and bread and their size relative to the height of the typical table are such that, in the absence of any rebound phenomena, they lead to a distinct bias towards a butter-side down landing. But before this can be taken as confirmation of popular belief, however, some practical issues must be addressed.
So far, we have ignored the means by which the toast comes to be in the overhang condition shown in fig. 1. This is clearly of practical importance, however, as the toast will typically leave the table as the result of sliding off a tilted plate, or being struck by a hand or arm. The consequent horizontal velocity may dominate the dynamics if the gravitational torque has insufficient time to induce significant rotation. In this case, the toast will behave like a simple projectile off the edge of the table, keeping its butter-side up throughout the flight. This raises the possibility that, while dynamically valid, the butter-side down phenomenon may only be witnessed for an in feasibly small range of horizontal velocities. To investigate this range, we first note that the time for an initially horizontal lamina of overhang parameter η to acquire inclination ψ follows from (8):
![]() |
(13) |
where
![]() |
(14) |
If the lamina has a horizontal velocity VH as it goes over the edge of the table, the time during which it is susceptible to torque-induced rotation is ~ . During this time its average overhang parameter η0 will he of the order 0.5, and it will acquire a downward tilt through the torque of order ψ. If this angle is small, the dynamics of the lamina can be considered those of a projectile. By (13) and the small angle approximation in (14), this implies that the effects of torque-induced rotation, and thus tumbling motion, will be negligible for horizontal velocities above about
![]() |
(15) |
At speeds considerably below this value (below, say, the torque-induced rotation should still dominate the dynamics of the falling toast, and the butter-side down phenomenon should still be observed. This conclusion is supported by observation. Furthermore, the relatively high value of VH ensures that the butter-side down phenomenon will be observed for a wide range of realistic launch scenarios, such as a swipe of the hand or sliding off an inclined plate. It therefore appears that the popular view that toast falling off a table has an inherent tendency to land butter-side down is based in dynamical fact. As we now show, however, this basic result has surprisingly deep roots.
We have seen that the outcome of the fall of toast from a table is dictated by two parameters: the surface properties of the toast, which determine η0, and the relative dimensions of the toast and table, which determine R. The latter is, of course, ultimately dictated by the size of humans. Using an anthropic argument, Press, has revealed an intriguing connection between the typical height of humans and the fundamental constants of nature. It centres on the fact that bipedal organisms like humans are intrinsically less stable than quadrupeds, and are more at risk of death by toppling. This leads to a height limitation on humans set by the requirement that the kinetic energy injected into the head by a fall will be insufficient to cause major structural failure and death. This height limitation on humans in turn implies a limit on the height of tables. We now deduce this limit using an anthropic argument similar to that of Press. We begin by considering a humanoid organism to be a cylindrical mass of polymeric material of height LH whose critical component is a spherical mass MC positioned at the top of the body. Then, by Press’s criterion, the maximum size of such an object is such that
![]() |
(16) |
where is the fall velocity, f is the fraction of kinetic energy that goes into breaking N polymeric bonds of binding energy EB. and the fracture is assumed to take place across a polymer plane n atoms thick, so that
![]() |
(17) |
where mP the mass of the proton. Thus the height of the humanoid will be of the order
![]() |
(18) |
A simple Bohr-atom model shows that
EB ~ qα2mec2 | (19) |
where α is the electronic fine structure constant, me is the mass of the electron, c the speed of light, and q for polymeric materials is ~ 3 × 10−3. The acceleration due to gravity, g, for a planet can also be estimated from 6rst principles, using an argument based on balancing internal gravitational forces with those due to electrostatic and electron degeneracy effects. This leads to
![]() |
(20) |
where μ is the radius of the polymeric atoms in units of the Bohr radius α0 and αG is the gravitational fine structure constant . We also have
![]() |
(21) |
where RC is the radius of the critical component and ρ0 is the atomic mass density
![]() |
(22) |
![]() |
(23) |
where
Inserting the various values, we find that this first-principles argument leads to a maximum safe height for human of around 3 m. Although the estimate of LH is pretty rough and ready, its weak dependency on the uncertainties in the various factors in (23) makes it fairly robust. The resulting limit has a number of interesting features. The estimate of its value agrees well with the observation that a fall onto the skull from a height of 3 m is very likely to lead to death; interestingly, even the tallest-ever human, Robert Wadlow, was − at 2.72 m − within this bound. The limit on height is also universal, in that it applies to all organism with human-like articulation on any planet. Most importantly, however, it puts an upper limit on the height of a table used by such organisms: around or 1.5 m. This is about twice the height of tables used by humans, but still only half that needed to avoid a butter-side down final state for tumbling toast: rearranging (9) we find
![]() |
(24) |
and inserting the observed value η ~ 0.015 given in (12) leads to R ~ 60 and h ~ 3 m. The limit (23) thus implies that all human-like organisms are doomed to experience tumbling toast landing butter-side down.
Our principal conclusion is a surprising one, given the apparently quotidian nature of the original phenomenon: all human-like organisms are destined to experience the tumbling toast manifestation of Murphy’s Law because of the values of the fundamental constants in our universe. As such, we have probably confirmed the suspicions of many regarding the innate cussedness of the universe. We therefore feel we must conclude this investigation on a more optimistic note. What can human-like-and thus presumably intelligent-organisms do to avoid toast landing butter-side down?
Building tables of the ~ 3 m height demanded by (24) is clearly impracticable. Reducing the size of toast is dynamically equivalent, but the required reduction in size is also nnsatisfactory. The best approach is somewhat counter-intuitive: toast seen heading off the table should be given a smart swipe forward with the hand. Similarly, a plate off which toast is sliding should be moved swiftly downwards and backwards, disconnecting the toast from the plate. Both actions have the effect of minimising the amount of time the toast is exposed to the gravitationally-induced toque, either by giving the toast a large horizontal velocity or by sudden disconnection of the point of contact. In both cases, the toast will descend to the floor keeping the butter side uppermost.
We end by noting that, according to Einstein, God is subtle, but He is not malicious. That may be so, but His inhence on falling toast clearly leaves much to be desired.
Здесь мы помещаем ссылки из русской Википедии на упомянутых великих людей. |
Robert A.J. Matthews (born 1959) is a British physicist, mathematician, computer scientist, and journalist.
Байесовская вероятность, интерпретация понятия вероятности, используемая в байесовской теории.
Robert Pershing Wadlow (1918 – 1940) also known as the Alton Giant and the Giant of Illinois, is the tallest person in history for whom there is irrefutable evidence.
Ian Fells is Emeritus Professor of Energy Conversion at the University of Newcastle upon Tyne, and former chairman of the "New and Renewable Energy Centre" at Blyth, Northumberland, England.
William H. Press (born 1948) is an astrophysicist, theoretical physicist, and computational biologist.
Paul Charles William Davies (born 1946) is an English physicist, writer and broadcaster, a professor at Arizona State University as well as the Director of BEYOND: Center for Fundamental Concepts in Science.
Пенти - ум, а Интер - нет
Перед тем, как процессор сгорит, в его памяти проносятся все операции, которые он когда-либо совершил.
Плохому сайту всегда баннеры мешают.
Повестка в военкомат - это бесплатный купон на двухгодичное отключение от Интернета.
Поломал Вася-хакер своего провайдера - и сидит, как дурак, без интернета...
Послать по e-мейлу к е-матери…
Почему книги Гейтса выходят в двух томах?- Второй том - patСh к первому...
Правда, что Билл Гейтс самый знаменитый человек в мире? - Нет. Самый знаменитый - его мать.
Предложение по усовершенствованию Windоws: пусть система создаёт не только папки Му dосumеnts, Му рiсturеs и Му musiс, но и Му роrnо.
При звуках коннекта теряет волю
При использовании трекбола надевайте коврик на палец
Прикладник является приложением к компьютеру, операционной системе и тому начальнику, который говорит ему, что делать.
Приложение совершило несовершаемую ошибку и будет закрыто
Программа MiСrоsоft не совершила никакой ошибки, но по привычке будет закрыта
Программист - это человек, который сначала долго думает, чтобы потом ничего не делать.
Программисты не пишут нелогичных программ, бывают нелогичные пользователи.
Программисты не умирают - они теряют память...
Продаётся модем, подключённый к Интернет
Продается стиральная машина "Windows-95". Стирает все
Пропала собака, особые приметы: Shift+2
Протокол IPX/SPX является быстрым маршрутизируемым протоколом для небольших сетей, но у него есть один недостаток - он разработан фирмой Novell... (С) «Секреты Windows NT 4.0 Server»
Пусти "Осла" в сеть, так он, осёл, весь траффик съест!
Пьяный русский хакер практически непобедим!
Ракета - она не дура. У неё внутри, извиняюсь за выражение, компьютер.
Раньше микропроцессоры были большими и занимали целые комнаты...
Российские хакеры взломали бортовой компьютер российского истребителя СУ-27. Теперь боекомплект самолёта нескончаемый.
С тех пор, как к интернету подключились женщины, нельзя доверять ни одному рейтингу или голосованию...
С точки зрения программиста пользователь - это периферийное устройство, вводящее набор символов в ответ на команду READ
Самый злобный вирус, который ничем нельзя вывести - это справка от Микрософт.
Самый страшный вирус всегда сидит перед компьютером.
Сегодня пробовал секс с женщиной. Жалкая пародия на установку Windows. (Из дневника ламера)
Секрет долговечности батареек Энерджайзерс - они работают на операционках фирмы MiСrosoft и повисают на определённом уровне зарядки!!!
Семь бед - один Reset
Сервер - не суетись под клиентом!
Сидим, как в деревне! Ни радио, ни телевизора - один Интернет остался!
Скажи мне какая у тебя стартовая страница, и я скажу кто ты.
Скажи мне, кто Билл Гейтс, и я скажу кто ты
Скажи мне, что ты ищешь в Интернете, и я скажу, кто ты.
Скачанного не воротишь.
Сначала было слово. И слово было два байта...
Совместим с гибким дисководом.
Спать на работе - грех, не для того вам там дан бесплатный интернет!
Супер акция!!! Загляни под крышку винчестера и выиграй приз!!!
Там, на неведомых дорожках китайских ломанных СD...
Тамбовский волк тебе провайдер...
Тарантино снял фильм "Убить Билла" после трехчасовой установки Windows XP.